On-chip plasmonic waveguide optical waveplate

نویسندگان

  • Linfei Gao
  • Yijie Huo
  • Kai Zang
  • Seonghyun Paik
  • Yusi Chen
  • James S. Harris
  • Zhiping Zhou
چکیده

Polarization manipulation is essential in almost every photonic system ranging from telecommunications to bio-sensing to quantum information. This is traditionally achieved using bulk waveplates. With the developing trend of photonic systems towards integration and miniaturization, the need for an on-chip waveguide type waveplate becomes extremely urgent. However, this is very challenging using conventional dielectric waveguides, which usually require complex 3D geometries to alter the waveguide symmetry and are also difficult to create an arbitrary optical axis. Recently, a waveguide waveplate was realized using femtosecond laser writing, but the device length is in millimeter range. Here, for the first time we propose and experimentally demonstrate an ultracompact, on-chip waveplate using an asymmetric hybrid plasmonic waveguide to create an arbitrary optical axis. The device is only in several microns length and produced in a flexible integratable IC compatible format, thus opening up the potential for integration into a broad range of systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure

This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...

متن کامل

Hybrid graphene plasmonic waveguide modulators

The unique optical and electronic properties of graphene make possible the fabrication of novel optoelectronic devices. One of the most exciting graphene characteristics is the tunability by gating which allows one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene wi...

متن کامل

CMOS-Compatible Silicon Nanoplasmonics for On-Chip Integration

Although silicon photonic devices provide a significantly larger bandwidth and dissipate a substantially less power than the electronic devices, they suffer from a large size due to the fundamental diffraction limit and the weak optical response of Si. A potential solution is to exploit Si plasmonics, which may not only miniaturize the photonic device far beyond the diffraction limit, but also ...

متن کامل

Miniature Microring Resonator Sensor Based on a Hybrid Plasmonic Waveguide

We propose a compact 1-μm-radius microring resonator sensor based on a hybrid plasmonic waveguide on a silicon-on-insulator substrate. The hybrid waveguide is composed of a metal-gap-silicon structure, where the optical energy is greatly enhanced in the narrow gap. We use the finite element method to numerically analyze the device optical characteristics as a biochemical sensor. As the optical ...

متن کامل

On-chip plasmon-induced transparency based on plasmonic coupled nanocavities

On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015